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Abstract Wave-induced fluid flow generates a dominant attenuation mechanism in

porous media. It consists of energy loss due to P-wave conversion to Biot (diffusive)

modes at mesoscopic-scale inhomogeneities. Fractured poroelastic media show signifi-

cant attenuation and velocity dispersion due to this mechanism.

The theory has first been developed for the symmetry axis of the equivalent trans-

versely isotropic (TI) medium corresponding to a poroelastic medium containing planar

fractures. In this work, we consider the theory for all propagation angles by obtaining

the five complex and frequency-dependent stiffnesses of the equivalent TI medium as a

function of frequency. We assume that the flow direction is perpendicular to the layer-

ing plane and is independent of the loading direction. As a consequence, the behaviour

of the medium can be described by a single relaxation function.
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We first consider the limiting case of an open (highly permeable) fracture of neg-

ligible thickness. We then compute the associated wave velocities and quality factors

as a function of the propagation direction (phase and ray angles) and frequency. The

location of the relaxation peak depends on the distance between fractures (the meso-

scopic distance), viscosity, permeability and fractures compliances. The flow induced

by wave propagation affects the quasi-shear (qS) wave with levels of attenuation similar

to those of the quasi-compressional (qP) wave.

On the other hand, a general fracture can be modeled as a sequence of poroelastic

layers, where one of the layers is very thin. Modeling fractures of different thickness

filled with CO2 embedded in a background medium saturated with a stiffer fluid also

shows considerable attenuation and velocity dispersion. If the fracture and background

frames are the same, the equivalent medium is isotropic, but strong wave anisotropy

occurs in the case of a frameless and highly permeable fracture material, for instance

a suspension of solid particles in the fluid.

Keywords Fractures · anisotropy · attenuation · boundary conditions

1 Introduction

The acoustic characterization of fractures and cracks is important from the point of

view of reservoir development (e.g., Gurevich et al., 2009). Moreover, it is also impor-

tant in CO2 storage to monitor the injected plumes as faults and fractures are gener-

ated, where the gas can leak to the surface (Picotti et al., 2012). A dense set of planar

fractures behaves as an effective long-wavelength TI medium, leading to azimuthally

varying velocity and attenuation of seismic waves. One of the important mechanisms

of seismic attenuation in porous media is wave-induced fluid flow, by which the fast

P wave is converted to slow (diffusive) modes of the Biot type (White et al., 1975;
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Pride et al., 2004; Carcione and Picotti; 2006). The phenomenon has been studied for

alternating thin poroelastic layers, along the direction perpendicular to the layer planes

(White et al., 1975) at all frequencies and propagation angles (Krzikalla and Müller,

2010; Carcione et al., 2011). The case of planar fractures embedded in a poroelastic

background medium is a particular case of the thin layer problem, where one of layers

becomes extremely thin and compliant. Alternative models, based on a distributions

of finite cracks, are given in Chapman (2003) and Galvin and Gurevich (2009). A com-

prehensive review of the wave-induced fluid-flow loss mechanisms, with a discussion of

the related relaxation frequencies, is given in the review paper by Müller et al. (2010).

Readers can also refer to Mavko et al. (2004) for detailed mathematical expressions of

the basic loss mechanisms.

In the case of a solid (non-porous) background, Chichinina et al. (2009) and Car-

cione et al. (2012) obtained analytical solutions for the TI and more general anisotropic

cases, respectively, i.e., the complex and frequency-dependent stiffness components and

corresponding wave velocities and quality factors. Regarding poroelastic media, Gure-

vich (2003) and Brajanovski et al. (2005) found the low- and high-frequency limit

elasticities of the equivalent TI medium under the long-wavelength assumption. More-

over, they obtained the expression of the P-wave modulus for waves propagating normal

to the fracture planes as a function of frequency. Lambert et al. (2006) validated the

theory by numerical simulations using a poroelastic reflectivity algorithm. Du et al.

(2011) have developed a similar stress-strain relation for fractured porous media in the

low-frequency limit.

To obtain the wave properties as a function of frequency and propagation (phase

and ray) angle, we need all the stiffness components of the equivalent TI medium.

An heuristic approach has been outlined by Lambert et al. (2005), who analyzed the
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qP wave. A physical interpretation has been given by Krzikalla and Müller (2010) for

layered media, who verified the correctness of the method by comparison to numeri-

cal solutions. Further tests for layered media have been performed by Carcione et al.

(2011). Basically, the approach assumes a 1D character of the fluid pressure equilibra-

tion process which generates diffusive modes from the fast P wave, i.e., the fluid-flow

direction is perpendicular to the fracture plane. In the presence of horizontal plane lay-

ers, the initial fluid pressure field is independent of the type of excitation, i.e., P waves

traveling horizontally or vertically (mainly compression), or S waves (shearing) will

excite the fluid pressure in such a way as to mantain its distribution. For more general

layer geometries, the process may depend on the direction of wave propagation and

these assumptions could not be strictly valid. As a consequence, the model considers

one relaxation function, corresponding to the symmetry-axis P-wave stiffness. From

this relaxation function and the high- and low-frequency elastic limits of the stiffness

tensor, we obtain the five stiffnesses of the equivalent medium. We then obtain the

quality factors and wave velocities as a function of frequency and propagation angle.

The examples consider a fractured-sandstone model with parameters mainly taken

from Brajanovski et al. (2005), i.e., the properties of the background porous medium

and the normal and tangential fracture compliances. Generally, in this work, fractures

are planar, rotationally symmetric, highly permeable and have infinite extent. The de-

gree of attenuation and velocity dispersion caused by different types of heterogeneities

in the rock properties, namely, porosity, grain and frame moduli, permeability, and

fluid properties were studied in detail in Carcione and Picotti (2006). Here, we focus

on the anisotropy properties of wave velocity and attenuation.
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2 Highly permeable fracture

Let us consider a set of fractures parallel to the (x, y)-plane in an isotropic porous

medium of porosity φ, separated by an average distance L, and denote by ZN and ZT

the normal and shear excess fracture compliances. Here, we assume that the fracture

thickness is nil (extremely small) and that the porosity within the fracture is one, i.e.,

there is no fracture frame. Moreover, let us denote by Km and µ the dry-rock bulk and

shear moduli of the background porous medium, respectively, with Em = Km + 4µ/3

and λm = Km − 2µ/3. Let Ks and Kf be the grain and fluid moduli, respectively.

Biot’s effective stress coefficient is

α = 1− Km

Ks
. (1)

Gurevich (2003) and Brajanovski et al. (2005) obtained the low-frequency limit (re-

laxed) elasticities of the equivalent TI medium,

cr11 =
cr13

2

cr33
+ 4

[

(1− γ)µ+
α2γ2β

1 + ZNβ

]

,

cr13 = cr33

[

1− 2γ + 2αγ
M

EG

α+ ZNEm

1 + ZNβ

]

,

cr33 = EG

[

1 +
ZN (αM − EG)2

EG(1 + ZNβ)

]−1

,

cr55 =
(

µ−1 + ZT

)−1
,

cr66 = µ,

(2)

where

EG = Km + α2M +
4

3
µ, β =MEm/EG, γ = µ/Em. (3)

(The first Eq. (35) in Brajanovski et al (2005) should be (µb
−1 + ZT )

−1 instead of

µb
−1 + ZT , using their notation).

The high frequency limit elasticities (unrelaxed) are given by (Brajanovski et al.,

2005),

c11 = c33 = EG,

c13 = c11 − 2µ,

c55 = cr55,

c66 = µ,

(4)
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where

M =
Ks

1− φ−Km/Ks + φKs/Kf
. (5)

Following the approach used by Krzikalla and Müller (2011) for a layered porous

medium (see also Carcione et al., 2011), we obtain the five stiffnesses of the equivalent

TI medium as

pIJ (ω) = cIJ +

(

cIJ − crIJ
c33 − cr33

)

[p33(ω)− c33], (6)

where ω is the angular frequency, and

p33(ω) =

[

1

EG
+

((αM/EG)− 1)2

βϑ cotϑ+ ZN
−1

]−1

, ϑ =

√

ω

iD

L

2
, D =

κβ

η
(7)

(Brajanovski et al, 2005), where η is the fluid viscosity, κ is the permeability and

i =
√
−1. (Note an omission in Eq. (15) of Brajanovski et al. (2005): Using their nota-

tion, Mb/Cb should be replaced by LbMb/Cb in the denominator. Eq. (8) in Gurevich

et al. (2009) is correct). We have used the opposite sign convention to express the

properties in the Fourier domain, i.e., ω has been replaced by −ω in Eq. (15) of Bra-

janovski et al. (2005) and Eq. (8) of Gurevich et al. (2009). The quantity ωL2/(4D) is

the normalized frequency. Equations (6) and (7) are deduced from equations (25), (41)

and (42) of Krzikalla and Müller (2011). Equation (6) is obtained by considering the

1D character of the fluid pressure equilibration process between the background porous

medium and the fractures, assuming that the fluid-flow direction is perpendicular to

the fracture plane. As a consequence, the model considers one relaxation function, cor-

responding to the symmetry-axis P-wave stiffness. Therefore, knowing this relaxation

function and the high- and low-frequency elastic limits of the stiffness tensor, one can

obtain the five complex and frequency-dependent stiffnesses of the equivalent viscoelas-

tic medium. The equations hold for frequencies ω ≪ ωB = ηπ/(κρf ), where ρf is the

fluid density, so that the fluid flow in the pores is of Poiseuille type and the effective



7

medium approximation (Backus averaging) is valid. The assumptions leading to equa-

tion (7) consider a single fluid and essentially a liquid, so that the fracture thickness

to fluid bulk modulus ratio is small.

The low-frequency regime occurs when pressure has enough time to equilibrate

between the background medium and the fractures within a wave period. This happens

when the diffusion length
√

D/ω (or wavelength of Biot’s slow wave) is much larger

than the period L. High frequency means that the frequency is much less than ωB

but much larger than D/L2. In both cases, the wavelength of the pulse must be much

larger than the spacing L (e.g., Carcione, 2007).

The bulk density is given by

ρ = (1− φ)ρs + φρf , (8)

where ρs is the grain density.

3 General fractures

The equivalent medium corresponding to a set of highly permeable fractures can be

obtained as a limit case of a layered medium, where one of the layers is very soft and

thin. Equation (7) has been obtained in this manner by Brajanovski et al. (2005). In this

section, we do not consider any approximation, the possibility of having a different fluid

saturating the fracture, a finite fracture thickness and a poroelastic medium forming

the fracture material. Consider a stack of two thin alternating porous layers of thickness

l1 and l2, such that the period of the stratification is L = l1 + l2. The complex and

frequency dependent stiffness p33 is given by

p33 =

[

1

EG
+

2(r2 − r1)
2

iω(l1 + l2)(I1 + I2)

]−1

, (9)
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where

r =
αM

EG
, I =

η

κa
coth

(

aL

2

)

, a =

√

iωηEG

κMEm
, (10)

for each single layer (White et al., 1975; Norris, 1993; Carcione and Picotti 2006) [see

also Carcione (2007), eq. (7.400)]. If φ2 → 1 and ZN = liml2→0[l2/(LEm2)], we obtain

equation (7). A similar limit for the shear compliance ZT is obtained by replacing

Em2 with µ2. To use equation (9) for a highly permeable fracture, one must consider

l2/L≪ 1, φ2 ≈ 1, Em2 = l2/(LZN ), µ2 = l2/(LZT ), α2 ≈ 1 and κ2 ≫ 1 D.

In the general case (an arbitrarily permeable fracture), we consider l2/L ≪ 1 and

general poroelastic parameters. The equivalent medium is obtained from equation (6),

where p33 is given by equation (9), with

cr66 = B∗

1 = 〈µ〉,

cr11 − 2cr66 = cr12 = B∗

2 = 2

〈

λmµ

Em

〉

+

〈

λm
Em

〉2
〈

1

Em

〉−1

+
B∗

6
2

B∗

8

,

cr13 = B∗

3 =

〈

λm
Em

〉

〈

1

Em

〉−1

+
B∗

6B
∗

7

B∗

8

,

cr33 = B∗

4 =
〈

1

Em

〉−1

+
B∗

7
2

B∗

8

=

[

〈

1

Em

〉

−
〈

α

Em

〉2
〈

EG

MEm

〉

−1
]

−1

,

cr55 = B∗

5 = 〈µ−1〉−1,

B∗

6 = −B∗

8

(

2
〈

αµ

Em

〉

+
〈

α

Em

〉

〈

λm
Em

〉

〈

1

Em

〉−1
)

,

B∗

7 = −B∗

8

〈

α

Em

〉〈

1

Em

〉−1

,

B∗

8 =

[

〈

1

M

〉

+

〈

α2

Em

〉

−
〈

α

Em

〉2 〈 1

Em

〉−1
]−1

,

(11)

and
c66 = cr66,

c11 − 2c66 = c12 = 2

〈

(EG − 2µ)µ

EG

〉

+

〈

EG − 2µ

EG

〉2〈
1

EG

〉

−1

,

c13 =

〈

EG − 2µ

EG

〉〈

1

EG

〉

−1

,

c33 =

〈

1

EG

〉

−1

,

c55 = cr55

(12)
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where we kept the notation of Gelinsky and Shapiro (1997) for reference (see also

Carcione et al., 2011), and where 〈ϕ〉 = (l1ϕ1 + l2ϕ2)/L.

Appendix A shows how to obtain the energy velocities and dissipation factor as a

function of the ray and phase angles from the complex stiffnesses (6) and the composite

density (8).

4 Example

The examples consider brine- and oil-saturated sandstones, with grain properties: Ks

= 37 GPa, µs = 44 GPa and ρs = 2650 kg/m3. Brine has the properties: Kf = 2.25

GPa, ρf = 1040 kg/m3, η = 0.0018 cP, while those of oil are Kf = 2 GPa, ρf = 870

kg/m3, η = 0.3 cP. The dry-rock bulk and shear moduli are given by the Krief model,

Km

Ks
=

µ

µs
= (1− φ)3/(1−φ) (13)

(Krief et al., 1990; Brajanovski et al., 2005). Porosity and permeability are related by

an equation derived by Carcione et al. (2000),

κ =
r2gφ

3

45(1− φ)2
, (14)

where rg = 20 µm denotes the average radius of the grains.

We consider two sets of compliances taken from Brajanovski et al. (2005), obtained

as

ZN =
1

Em

(

1

∆N
− 1

)−1

and ZT =
1

µ

(

1

∆T
− 1

)−1

,

where (∆N,∆T ) = (0.2, 0.5), giving 1/ZN = 121 GPa and 1/ZT = 14 GPa, and

(∆N,∆T ) = (0.02, 0.05), giving 1/ZN = 1483 GPa and 1/ZT = 264 GPa. In the second

set, the two faces of a single fracture are in better contact, since perfect bonding or

absence of fractures occurs when ZN → 0 and ZT → 0. The quantities ∆N and ∆T
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are dimensionless fracture weaknesses (see Hsu and Schoenberg, 1993; Bakulin et al.,

2000).

First, we assume φ = 0.25, L = 0.2 m and ∆N = 0.2 and compute the P-wave

phase velocity and dissipation factor along the direction perpendicular to the fracture

plane (see Figure 1). As can be seen the relaxation peak for oil is located at the

seismic frequency band while that of brine is located at the sonic band. The peak

relaxation frequency is proportional to κ/η [see Eq. (7.401) in Carcione (2007)] and

can substantially be affected by the normal fracture compliance as shown in Figure

2, where the P-wave peak frequency and peak dissipation factor for oil saturation are

represented as a function of ∆N . The peak moves from the sonic band for ∆N = 0.02

(4 kHZ and Q = 286) to the seismic band for ∆N = 0.2 (35 kHZ and Q = 26).

Next, we consider oil saturation, ∆T = 0.5 and use equation (6) to obtain the

complex stiffnesses at 35 Hz, where the peak quality factor has a value of 26. We

obtain
p11 = (33.68, 0.001),

p13 = (5.75, 0.034),

p33 = (30.71, 1.17),

p55 = 6.96,

p66 = 13.92

(15)

in GPa. The energy velocities and dissipation factors as a function of the ray angle

ψ and propagation (phase) angle θ for oil saturation are represented in Figures 3a

and 3b, respectively. There is a noticeable shear-wave splitting, also called seismic

birefringence, and the coupling between the qP and qS waves generates strong shear

attenuation (Q ≈ 40) at approximately 50o, with magnitudes comparable to those of

the qP wave. The SH wave is lossless. Energy velocity rather phase velocity is shown,

since it represents the wavefront (e. g., Carcione, 2007).

The same plots are repeated for oil saturation with (∆N,∆T ) = (0.02, 0.05) (Fig-

ures 4 and 5). In this case, the fracture is stiffer than above. i.e., the two faces of the
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fracture are in better contact. As can be seen, the peak has moved to the sonic band

and shows less velocity dispersion and attenuation. The P-wave peak quality factor

along the vertical direction is equal to 286. Moreover, the medium is almost isotropic.

Figure 6 represents the dissipation factors for an oil saturated fractured medium as

a function of the ray angle. The qS factor corresponding to the more compliant fracture

set shows triplications (a), as the wavefronts in Figure 3a, while the stiffer fracture set

induces a weak TI medium (b), almost isotropic, with the ray angle approximately equal

to the phase angle. Finally, the relaxed and unrelaxed energy velocities (wavefronts) for

an oil saturated fractured medium are shown in Figure 7, where the range of velocity

dispersion can clearly be seen. Major differences occur in the direction normal to the

fracture plane (qP wave) and at the location of the cuspidal triangles (qS wave).

Next, we consider a more general case, where the fracture has a finite thickness

and is a poroelastic medium. In the first example, the skeleton is the same for both

the background medium and fracture material and is given by equation (13) with φ =

0.25. The fracture is filled with CO2 defined by Kf = 0.025 GPa, ρf = 500 kg/m3, η =

0.00002 cP (Carcione et al., 2012). The equivalent medium is obtained from equations

(6) and (9)-(12). First, we consider L = 0.2 m and a fracture thickness l2 = 1 cm.

Figure 8 shows the phase velocity and dissipation factor for water and oil saturating

the background medium. The equivalent medium is isotropic since the shear moduli

of the background and fracture media are the same, because the dry- and wet-rock

shear moduli are the same according to Gassmann’s equations. On the other hand, the

effect of fracture thickness (l2 = 1 cm and l2 = 1 mm) is shown in Figure 9, where the

background medium is saturated with brine. As can be seen, varying thickness mainly

affects the peak attenuation, while the type of background fluid dictates the location

of the relaxation peak.
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Finally, we consider a fracture medium with φ = 0.5 filled with gas in a brine-

saturated background (φ = 0.25), where L = 0.2 m and l2 = 1 cm (fracture thickness).

Since the fracture porosity exceeds the critical porosity, the material is practically a

suspension of grains with negligible frame moduli. In this case, the equivalent medium

is anisotropic. Figure 10 shows polar plots of the qP and qS energy velocities and

the dissipation factor as a function of the phase angle. The fact that the background

and fracture media have very dissimilar frame moduli induces strong velocity and Q

anisotropy. The qP waves shows high dissipation compared to the qS wave and the SH

wave is lossless.

The cases presented in Figures 8-10 are more general since the fracture material is

explicitly considered as a poroelastic medium, while in the previous examples fractures

are modeled by means of fracture weaknesses. Attenuation for both models behaves

dissimilarly for the cases considered here. In the general case, the P-wave attenuation

is stronger along the fracture planes.

Other cases of interest but showing negligible dissipation involve the presence of a

low porosity layers. For instance, if the background medium of the previous example

has φ = 0.05, we obtain strong anisotropy, with c11 = 77 GPa, c33 = 22 GPa, c55 = 10

GPa and c66 = 36 GPa. This system could represent a fractured shale. On the other

hand, if we consider a fractured medium with φ = 0.05 filled with brine (a seal) and a

background medium with φ = 0.25 filled with CO2, we obtain weak anisotropy.

The implementation of these models in seismic forward modeling in anisotropic

porous media to compute synthetic seismograms (e.g., Carcione, 1996; Du et al., 2011)

can be important to characterize the seismic response of fractured reservoirs.
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5 Conclusions

First, we have analyzed the angular properties – wave velocities and dissipation factors

– of a fractured medium saturated with a single fluid. The wavelength is much larger

than the fracture spacing. Fractures are modeled as boundary discontinuities in the

displacement field. The energy velocity and quality factors as a function of the propa-

gation and ray (energy) angles are obtained for homogeneous viscoelastic plane waves

(wavenumber and attenuation directions coincide).

The P wave has strong attenuation along the direction perpendicular to the layering

plane, while the attenuation is weak along the fracture planes. The qS wave has no

loss along the directions parallel and perpendicular to the fracture planes and has

maximum attenuation at intermediate angles, with magnitudes comparable to those

of the qP wave. Moreover, it shows splitting (triplications) as the wavefronts. On the

other hand, the SH wave is lossless. Viscosity (and permeability) dictate the location of

the relaxation peak, as well as the fracture spacing and compliances. Higher viscosity

(oil versus brine) implies a lower peak frequency, e.g., for given values of the fracture

stiffnesses oil has a peak at the seismic band while brine has a peak at the sonic band,

in agreement with the mesoscopic loss mechanism. The fracture spacing has the same

effect as the viscosity. Here, the term “mesoscopic” refers to fracture spacing, which is

much larger than the pore radius but much smaller than the pulse wavelength. Higher

fracture stiffnesses (lower compliances) implies lower attenuation and anisotropy and

a higher peak relaxation frequency.

Then, we consider the general case, (an arbitrarily permeable fracture of finite

thickness). As before, the wavelength is much larger than the fracture spacing. Varying

thickness mainly affects the peak attenuation, while the type of background fluid affects
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the location of the relaxation peak. Strong anisotropy is present if the fracture material

has no frame (and high permeability). The presence of low porosity layers inhibits the

mesoscopic loss mechanism.

The proposed model can be important in determining the orientation of fractures on

the basis of seismic velocity and attenuation measurements. Moreover, it can be useful

to perform sensitivity studies for the detection of CO2 leakages through fractures,

related to carbon-dioxide storage in depleted reservoirs.
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A Wave velocities and quality factors

The complex velocities are required to calculate wave velocities and quality factors of the
fractured medium. They are given by

vqP = (2ρ)−1/2
√

p11l
2
1 + p33l

2
3 + p55 + A

vqSV = (2ρ)−1/2
√

p11l
2
1 + p33l

2
3 + p55 −A

vSH = ρ−1/2
√

p66l
2
1 + p55l

2
3

A =
√

[(p11 − p55)l21 + (p55 − p33)l23]
2 + 4[(p13 + p55)l1l3]2

(16)

(Carcione, 2007), where l1 = sin θ and l3 = cos θ are the directions cosines, θ is the propa-
gation angle between the wavenumber vector and the symmetry axis, and the three velocities
correspond to the qP, qS and SH waves, respectively. The phase velocity is given by

vp =

[

Re

(

1

v

)]

−1

, (17)

where v represents either vqP, vqSV or vSH. The energy-velocity vector of the qP and qSV
waves is given by

ve

vp
= (l1 + l3 cotψ)

−1ê1 + (l1 tanψ + l3)
−1ê3 (18)

(Carcione, 2007), where

tanψ =
Re(β∗X + ξ∗W )

Re(β∗W + ξ∗Z)
, (19)

defines the angle between the energy-velocity vector and the z-axis (the ray angle),

β =
√
A± B,

ξ = ±pv
√
A∓ B,

B = p11l
2
1 − p33l

2
3 + p55 cos 2θ,

(20)

where the upper and lower signs correspond to the qP and qS waves, respectively. Moreover,

W = p55(ξl1 + βl3),
X = βp11l1 + ξp13l3,
Z = βp13l1 + ξp33l3

(21)

(Carcione, 2007), where “pv” denotes the principal value, which has to chosen according to
established criteria.

On the other hand, the energy velocity of the SH wave is

ve =
vp

ρRe(v)

[

l1Re
(p66

v

)

ê1 + l3Re
(p55

v

)

ê3

]

. (22)

Finally, the quality factor is given by

Q =
Re(v2)

Im(v2)
. (23)
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Fig. 1 P-wave phase velocity (a) and dissipation factor (b) along the direction perpendicular
to the fracture planes for brine and oil filling the pore space with ∆N = 0.2.



21

Fig. 2 P-wave peak relaxation frequency (a) and peak dissipation factor as a function of the
normal fracture parameter ∆N for oil saturation.
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Fig. 3 Energy velocity (a) and dissipation factor (b) as a function of the ray and propagation
(phase) angles, respectively, for an oil saturated fractured medium with (∆N,∆T ) = (0.2, 0.5).
The frequency is 35 Hz.
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Fig. 4 P-wave phase velocity (a) and dissipation factor (b) along the direction perpendicular
to the fracture planes for oil filling the pore space ∆N = 0.02.
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Fig. 5 Energy velocity (a) and dissipation factor (b) as a function of the ray and propagation
(phase) angles, respectively, for an oil saturated fractured medium with (∆N,∆T ) = (0.02,
0.05). The frequency is 4 KHz.
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Fig. 6 Dissipation factor as a function of the ray angle for an oil saturated fractured medium.
(a) (∆N,∆T ) = (0.2, 0.5) and f = 35 Hz; (b) (∆N,∆T ) = (0.02, 0.05) and f = 4 kHz.
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Fig. 7 Energy velocities (wavefronts) for an oil saturated fractured medium, where (∆N,∆T )
= (0.2, 0.5) and f = 35 Hz. The dashed and solid lines correspond to the relaxed and unrelaxed
states, respectively.
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Fig. 8 P-wave phase velocity (a) and dissipation factor (b) for CO2 saturated fractures em-
bedded in brine and oil saturated media.
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Fig. 9 P-wave phase velocity (a) and dissipation factor (b) for CO2 saturated fractures em-
bedded in brine saturated media. Two fracture thicknesses are considered.
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Fig. 10 Polar plot of the energy velocity (a) and dissipation factor (b) as a function of the
propagation (phase) angle, for finite-thickness fractures (l2 = 1 cm) saturated with CO2 and
embedded in a brine saturated medium. The fracture period is 20 cm and the frequency is 50
Hz.


